skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Steffen, Morgan M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Water bloom development due to eutrophication constitutes a case of niche specialization among planktonic cyanobacteria, but the genomic repertoire allowing bloom formation in only some species has not been fully characterized. We posited that the habitat relevance of a trait begets its underlying genomic complexity, so that traits within the repertoire would be differentially more complex in species successfully thriving in that habitat than in close species that cannot. To test this for the case of bloom-forming cyanobacteria, we curated 17 potentially relevant query metabolic pathways and five core pathways selected according to existing ecophysiological literature. The available 113 genomes were split into those of blooming (45) or nonblooming (68) strains, and an index of genomic complexity for each strain’s version of each pathway was derived. We show that strain versions of all query pathways were significantly more complex in bloomers, with complexity in fact correlating positively with strain blooming incidence in 14 of those pathways. Five core pathways, relevant everywhere, showed no differential complexity or correlations. Gas vesicle, toxin and fatty acid synthesis, amino acid uptake, and C, N, and S acquisition systems were most strikingly relevant in the blooming repertoire. Further, we validated our findings using metagenomic gene expression analyses of blooming and nonblooming cyanobacteria in natural settings, where pathways in the repertoire were differentially overexpressed according to their relative complexity in bloomers, but not in nonbloomers. We expect that this approach may find applications to other habitats and organismal groups. IMPORTANCE We pragmatically delineate the trait repertoire that enables organismal niche specialization. We based our approach on the tenet, derived from evolutionary and complex-system considerations, that genomic units that can significantly contribute to fitness in a certain habitat will be comparatively more complex in organisms specialized to that habitat than their genomic homologs found in organisms from other habitats. We tested this in cyanobacteria forming harmful water blooms, for which decades-long efforts in ecological physiology and genomics exist. Our results essentially confirm that genomics and ecology can be linked through comparative complexity analyses, providing a tool that should be of general applicability for any group of organisms and any habitat, and enabling the posing of grounded hypotheses regarding the ecogenomic basis for diversification. 
    more » « less
  2. Humbert, Jean-François (Ed.)
    Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates ( Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp ( Exiguobacterium sp. JMULE1) to 5.7 Mbp ( Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis . Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai ( Taihu ) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis . 
    more » « less
  3. Abstract Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated withMicrocystis aeruginosaduring blooms in 12 lakes spanning four continents as an initial test of the hypothesizedMicrocystisinteractome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate thatM. aeruginosais cosmopolitan in lakes across a 280° longitudinal and 90° latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, likeMicrocystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. WhileMicrocystisand the microbiome bacteria shared many genes, whole‐community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across globalMicrocystisblooms, thereby providing initial support for the hypothesizedMicrocystisinteractome. 
    more » « less